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SUMMARY -

/’9534
An analysis is given for a distributed RC network which

consists of a resistive layer separated by an insulator from
three separate electrodes, A conducting tab is placed completely
across two opposing ends of the resistive layer. These tabs
form two terminals of a five-terminal network. The three electrodes
form the other terminals. The short circuit admittance parameters

i for this network are derived and consideration is given to special
interconnections.’ The short circuit transfer admittances between
an electrode and either end of the resistive layer may easily
be made rational. An interconnection provides the possibility of
a rational short circuit transfer admittance which does not possess
a zero at the origin. The method can be extended to similar

multielectrode networks.
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ANALYSIS OF RECTANGULAR RC DISTRIBUTED
CIRCUITS WITH SHAPED ELECTRODES

Introduction. Circuit theory for linear, lumped, passive,

bilateral, finite networks has been well developed. The distri-
buted circuit, while offering different properties of which some
are advantageous, has not been fully explored. Some of the recent
methods of synthesis with distributed circuits have been concerned
with the interconnection of a number of uniform structures [l],
[2]. Another method makes use of a non-uniform resistance and
capacitance of a single structure [3]. A basic building block
which lies between these approaches uses a uniform resistance and
a partitioned capacitance [4], [5]. A logical extension of the
latter circuit is the subject of this paper. It is necessary that
the properties of the structure be established vbefore the synthesis

problem can be solved.



The type of distributed RC network discussed in this paper
ig illustrated schematically in Fig. 1. It is composed of a
rectangular uniform resistive layer of width W and length L.
A conducting tab is placed along each end of the resistive layer.
Terminals 1 and 2 connect to these tabs. At any point along the

resistive layer, the capacity per unit area to each of the three

(0) (4)

3
conducting plates is defined as C' '"(x,y), C( )(x,y) and C (x,y)
as shown. The total capacity per unit area is constant. That 1is
4
¢ e,yy + Py« iy = (1)

A simple construction that accomplishes the capacity require-
ment is a three layer structure as shown in Fig. 2. Two of the
three capacitances are zero at any point; the third is equal to
C. Although this is a very useful structure, it is but a special
case for the analysis given.

In the analysis the interelectrode capacitances are assumed

to be zero. Any non-zero value can be

[¢]

onsidered tc be a lumped

element connected external to the idealized distributed circuit.

Analysis. The potential at any point on the resistive layer with
respect to terminal zero is defined as V and is a function of
X and y. The relations to be solved with the proper boundary con-

ditions are

V. J = - sCV + J (2)



and

Where

The

and

and

The

|

is a surface current vector in amperes per unit length,

is an input scalar current density in amperes per unit
area.

is the layer resistivity in ohms per square.

is the total capacity in farads per unit area,

term J; in (1) allows for potentials on the other electrodes

is a

The

(3)

function of position.

gy = s yy 4 sy, (L)

surface current density may be eliminated between (2)

to give (5).

V .-V V= RCsV -JR (5)

coordinates are shown in Fig. 2. In the first case, let all

terminals excluding number 1 be connected together. Voltages and

currents are defined in Fig. 3. This connection imposes the fol-

lowing boundary conditions:

V=V, at x = 0,

V = 0 at x L.

[}

[
1

0 at y O and at y = W.

y

J] 1s zero everywhere,



The solution to (5) in this case is the classical solution to the

distributed RC circuit with shorted terminals.

v; Sinh [y(L-x)]

Sinh [yL]
and

yCosh [y(L-x)]
R Sinh [yL]

when y = VRCs

When (7) is evaluated at the ends, the currents I;,; and I,;

are readily determined.

WV, vy Coth [yL]

Ill = (8)
R
Wvy
—121 = (9)
R Sinh [yL]
Hence,
W Coth L
yi1 = ! [yL] (10)
R
and
W
-y21 = : . (11)

R Sinh [yL]



The current I3; can be determined by the relation

I,
J- ¢ (x,y) v axay . (12)

In some applications (12) is easily applied directly. In the general

(3)(

case it is convenient to express C X,y) by a two-dimensional

Fourier series. Let

[e e} oo

C(3)(x,y) = C ) ) Ci;) Sin (HEX) Cos (E%l) . (13)

n=1 m=0

This apparently restricted form is quite general since the area
specified is only one-fourth of the fundamental area. The sub-

stitution of (13) into (12) with the indicated integration performed

yields
WV © nsC(ig
I3y = - — 2 (1h)
R L n=1 s + Ano
and
3
Ww o nsC(ng
~y31 = == ] (15)
RL =1 + A
n=l s no
where

By similar operations



-YL;1=%% I —== . (16)

The other short circuit parameters may be determined from the inter-
connections shown in Fig. 4, For these connections, the boundary

conditions are:

V=0at x = 0 and at x = L
Ey = 0aty =0 and at y = W
3
Jy = V3s C< )(x,y)
In this case the solution of (5) is
[s¢] [ee)
v= 7 7 v sin (%) cos (B (17)
nm L W
n=1 m=0
Vi s c(i;
where Vnm = ——— (18)
s + A
nm
and
2 2
(%1) + (%l)
Aom © . (19)
RC

The surface current density may be obtained by taking the gradient

of V as indicated in (3). The component in the x direction is
1 ot S nmw nmx mmy
J = - = =
X R L Z Vnm(L ) Cos | L ) Cos W ) (20)




The currents Ij3 and I,3 may be determined from (20) by putting
x = 0, and x = W respectively and integrating from O to W. The
corresponding short circuit admittance parameters are then deter-

mined to be

Wm o “Sc(zi
-yi3 =jp L T — (21)
n=1l s + A
no
and
W w nsC(ii Cos (nm)
Y23 = RT ) . (22)
n=1 s + A
no

The current I,3 is determined by the relation

W L
Iy3 = - s J J C(L’)(x,y) V dxdy (23)

where V is defined by (17). With a change in superscript, C(q)(

(3)

x,y)
can be expanded in the same manner as C x,y) in (13). The eval-

uation of (23) reveals

o C
ey e G ff Cem Cem (2

n=1 m=0 s + A

The potential between the resistive layer and terminal 3 is V - Vg,

Hence, the driving current is



L
.[ 0(3)(x,y)(V3—V) dxdy (25)
0

3 3), 2
A E S S DL B S S C A I
Y33 = sCWL | = 7§ -y 1 1 — . (26)
n=1 n n=1 m=0 s + A
nm
In a similar manner
2
e e R S R C AN
Yuy = sCWL - Z - E z Z R — . (27)
n=1 n n=1l m=0 s + Anm
The same procedure yields
oo sC(u) Cos (nm)
nmwW o
You = o 1 X (28)
n=1 s + A
no
and
Y22 = Wy Coth [YL] . (29)

R

The network is bilateral, hence all short circuit admittance
parameters are determined.

The five-terminal network which has been analyzed may now
be interconnected in a variety of ways. For example, if terminals
1 and 2 are connected to the reference terminal, and if further

(3)( ()

Xx,y) and C (x,y) are expressible in a finite trigonometric



series, a three-terminal network is obtained which has rational
short circuit admittance parameters. The physical construction

with c<3)( (“)(

x,y) and C X,7) expressible with a finite trigono-
metric series is difficult to produce. The structure illustrated
in Fig. 2 is easy to construct and possesses interesting features.

Another example of interconnection is the case where terminals
"1" and "3" are connected together to form terminal "a", terminals
"2" and "4" are connected together to form terminal "b", and term-
inal "O0" is used as a common terminal to form a two-port. The

corresponding short circuit parameters are expressible in terms of

the parameters of the five-terminal network.

Ygo = Y11 + ¥13 ¥ ¥31 *+ V33 (30)
Yap = Y1u * ¥i2 + y3u * Y32 (31)
Ypp = Y22 * You * Yuz t* Vuuy (32)

A special case of this structure is also of interest,. Let

(x,y) = 0. The short circuit transfer admittance becomes
Yiu + y12. The series form of y;y as given in (16) converges
rapidly if the slope of the amplitude function is positive and
the overall loss is not too great. In other cases it may con-
verge wvery slowly. For these cases, it is computionally shorter
to use (12) directly. Assuming the form given in Fig. 2 where
electrode number 4 covers the area bounded below by the x axis,

and above by the expression f(x), it is seen from (6) and (12) that
L

R - S £(x) Sinh [y(L-x)ax . (33)

Sinh [yL] O
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This integral can usually be evaluated in a straightforward manner.
However, it may be observed that it is a convolution integral and

may be evaluated as

t
1
-

g(1) = f0) simn ye)lax = [ el G
Y

where F(P) is the Laplace transform of f(x) and P is the Laplace
transform variable. It should also be noted that linear operations
on f(x) result in the same linear operations on g(L). With this
in mind, a table can quickly be constructed for ¥Yy1 and f(x) for a
number of cases.

Table I is such an abbreviated table which gives a few inter-

esting results.
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TABLE I

Transfer Admittance as a Function
of Electrode Shape

£(x) RAS
sC sinh [y(L-x,)]
1. 6(x—x0) .
Sinh [yL]
sC[Cosh [y(L—xO)} - l]
2. U(x-%) '
Y Sinh [yL]
3 . k s C [ Cosh [yL] - 1]
Y Sinh [yL]
L, x % [1 - __l__é___]
Sinh [yL]
5 (x-2)U(x-8) s C -(L-a) , Sinh [y(L-a)]
. - AT Qg
sinh [yL] | Y y?
[ 1
6 2 s C -2 - y2 L2 + 2 Cosh [yL]
sinh [yL] | y3 J
i B
7 Sin ax s C a Sinh [yL] - y Sin [aL]
sinh [yL] | a? + RCs i
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f(x) -Yy1
mr
8. sin 2T 4 RL
L
s 4+ (mm)?
L2RC
9. U(x-a) Sin [b(x-a)] s C b Sinh [y(L-a)] - vy Sin [b(L-a)]
Sinh [vL] RCg + b2
10 Cos ax s C ¥y Cosh [yL] - Cos [al]
Sinh [yL] RCs + a?2
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It is interesting to note that if f(x) is Wx/L, then

1
=¥21 =¥Yu1 = § - (35)

If one further adds to f{(x) a function of the form

N
£2(x) = ] a_ sin BIE (36)

then the short circuit transfer function is a rational function.
Contrary to previous results, this rational function does not
possess a zero at the origin. The position of the poles in this
case are restricted to values of -\ _ as given in (15). The
total function of f(x) is, of course, restricted to the area of
the rectangular structure.

The analysis here has dealt with a three-electrode system.
However, the methed is applicable to a similar structure with

many elements.



—1h-

Conclusion: A method of analysis has been developed for the
rectangular distributed circuit described. This circuit is a
two-dimensional system and therefore has the possibilities of

a doubly infinite number of poles. When the capacitance of one
of the electrodes to the resistive sheet can be expressed in a
doubly finite trigonometric series, then the driving point and
transfer admittances of this electrode are rational functions,.

A practical structure produces a short circuit transfer admit-
tance which is rational and which does not necessarily have a
zero at the origin. A relation was established for the possible

location of the poles.
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